

Matrix methods in the analysis of complex networks

Random walks

Dario Fasino Rome, Univ. "Tor Vergata", November 22–24, 2022

Introduction

Random walk on a graph $\mathcal{G} = (V, E)$:

- Start from a node *i* ∈ V (possibly chosen with some probability)
 - Pick one of the outgoing edges
 - move to the destination of the edge
 - Repeat.

Applications

Random walks are widely used in network science to

- model user navigation and epidemic spreading
- quantify node centrality and accessibility
- reveal network communities and core-periphery structures.

Introduction

Random walk on a graph $\mathcal{G} = (V, E)$:

- Start from a node *i* ∈ V (possibly chosen with some probability)
 - Pick one of the outgoing edges
 - move to the destination of the edge
 - Repeat.

From here onward $\mathcal{G} = (V, E)$ denotes a directed graph without sink nodes: $d_i^{out} > 0$ for $i \in V$.

Questions

- Where is the walker after k steps?
- Long-term behavior? Depends on the initial node?
- How many timesteps to go from *i* to *j*?

Notations

- X_k : position of the walker at time k = 0, 1, 2... (random variable)
- x(k): probability vector, $x(k)_i = \mathbb{P}(X_k = i)$
- P: column stochastic matrix, P_{ij} = ℙ(X_{k+1} = i|X_k = j) (independently of k)

A random walk is a sequence of probability vectors $\{x(k)\}$ such that x(k+1) = Px(k) where the transition matrix P is column stochastic.

 $x(k)=P^kx(0).$

In fact, $(P^k)_{ij} = \mathbb{P}(X_{\ell+k} = i | X_\ell = j).$

Notations

- X_k : position of the walker at time k = 0, 1, 2... (random variable)
- x(k): probability vector, $x(k)_i = \mathbb{P}(X_k = i)$
- P: column stochastic matrix, P_{ij} = P(X_{k+1} = i|X_k = j) (independently of k)

Let A be the adjacency of a possibly weighted digraph, A_{ij} = weight of $(i, j) \in E$ if present, $A_{ij} = 0$ else. Then the transition matrix of the associated RW is

$$\mathsf{P}_{ij} = rac{\mathsf{A}_{ji}}{\sum_{\ell=1}^n \mathsf{A}_{j\ell}}.$$

If the graph is not weighted then the random walk is uniform.

Ergodicity

A probability vector π is stationary for P if $P\pi = \pi$. At least one is definitely there.

The random walk is ergodic if there is only one stationary probability vector π and for all initial probability vectors x_0 the random walk converges to π :

$$\lim_{k\to\infty}x(k)=\pi.$$

Equivalently,

$$\lim_{k\to\infty} P^k = \pi e^{\mathrm{T}}.$$

Lemma

A random walk is ergodic iff P is aperiodic and $\rho(P)$ is simple. Moreover, if P is irreducible then $\pi > 0$.

Proof: From P-F theory.

Ergodicity

A probability vector π is stationary for P if $P\pi = \pi$. At least one is definitely there.

The random walk is ergodic if there is only one stationary probability vector π and for all initial probability vectors x_0 the random walk converges to π :

$$\lim_{k\to\infty}x(k)=\pi.$$

Equivalently,

$$\lim_{k\to\infty} P^k = \pi e^{\mathrm{T}}.$$

Theorem

Let \mathcal{G}' be the subgraph of \mathcal{G} made by all globally reachable nodes. The random walk on \mathcal{G} is ergodic iff \mathcal{G}' is not empty and aperiodic. Moreover, if \mathcal{G} is strongly connected then $\pi > 0$.

Proof: See Enrico's second lecture.

PageRank

Let P be the stochastic matrix describing the RW on a graph G, let v > 0 be a fixed probability vector, and $\alpha \in (0, 1)$.

The matrix $G = \alpha P + (1 - \alpha)ve^{T}$ is the Google matrix of the graph \mathcal{G} .

The Brin-Page navigation model

At each time step, the walker

- with probability α performs a step according to the RW rule;
- with probability 1α jumps to a node j chosen with probability v_j .

The matrix G is positive and stochastic \rightsquigarrow The RW associated with G is ergodic, the stationary vector π is positive, and

$$\begin{cases} G\pi = \pi \\ e^T \pi = 1 \end{cases} \quad \rightsquigarrow \quad (I - \alpha P)\pi = (1 - \alpha)v.$$

Hitting times and return times

Problem

What is the average number of timesteps for the walker to go from node s to node t?

Hitting time of t starting from s: $\tau_{s \to t} = \mathbb{E}(k|X_k = t, X_0 = s)$.

If s = t then $\tau_{s \to t} = 0$, otherwise

$$\tau_{s \to t} = P_{ts} \cdot 1 + \sum_{i \neq t} P_{is}(\tau_{i \to t} + 1)$$
$$= 1 + \sum_{i=1}^{n} P_{is}\tau_{i \to t}.$$

Hitting time matrix

The hitting time matrix $T = (\tau_{i \rightarrow j})$ solves the equation

$$(I - P^{\mathrm{T}})T = ee^{\mathrm{T}} - \mathrm{Diag}(\tau_1, \ldots, \tau_n)$$

where $\tau_i = \mathbb{E}(k > 0 | X_k = i, X_0 = i)$ is the return time of node *i*.

Hitting times and return times

Let *P* be irreducible, $\pi = (\pi_1, \ldots, \pi_n)^{\mathrm{T}} > 0$ be the stationary probability vector,

$$\mathsf{P}\pi=\pi, \qquad \mathsf{e}^{\mathrm{\scriptscriptstyle T}}\pi=1.$$

From $(I - P^{T})T = ee^{T} - Diag(\tau_1, \dots, \tau_n)$ we obtain

$$0 = \pi^{\mathrm{T}} (I - P^{\mathrm{T}}) T = \pi^{\mathrm{T}} (ee^{\mathrm{T}} - \operatorname{Diag}(\tau_1, \dots, \tau_n))$$
$$= e^{\mathrm{T}} - \pi^{\mathrm{T}} \operatorname{Diag}(\tau_1, \dots, \tau_n).$$

Kac's lemma

For an irreducible RW with stationary prob. vector $\pi > 0$,

 $\tau_i=1/\pi_i.$

Thus $\operatorname{Diag}(\tau_1,\ldots,\tau_n) = \operatorname{Diag}(\pi_1,\ldots,\pi_n)^{-1}$.

Hitting times and return times

Let P be irreducible, $\pi = (\pi_1, \dots, \pi_n)^{\mathrm{T}} > 0$ be the stationary probability vector,

$$\mathsf{P}\pi=\pi, \qquad \mathsf{e}^{\mathrm{\scriptscriptstyle T}}\pi=1.$$

From $(I - P^{T})T = ee^{T} - Diag(\tau_1, \dots, \tau_n)$ we obtain

$$(I - P^{\mathrm{T}})T\pi = (ee^{\mathrm{T}} - \operatorname{Diag}(\tau_1, \dots, \tau_n))\pi$$
$$= e - \operatorname{Diag}(\pi_1, \dots, \pi_n)^{-1}\pi = 0.$$

But then $T\pi \in \operatorname{Ker}(I - P^{\mathrm{T}}) = \langle e \rangle$.

Random target lemma

$$(T\pi)_i = \sum_{j=1}^n \pi_j \tau_{i \to j} = \kappa,$$

where $\kappa > 0$ is the Kemeny's constant.

A special case

Let \mathcal{G} be irreducible and undirected, $A = A^T$.

Then $P = A \operatorname{Diag}(d)^{-1}$ and $\pi = d/(e^{T}d)$ where d = Ae is the degree vector.

Define $M = (A/(e^{T}d) - \text{Diag}(\pi) - \pi\pi^{T})^{-1}$ and m = diag(M). Note that $M = M^{\mathrm{T}}$.

Then $T = M - em^{\mathrm{T}}$.

- The symmetric part $\frac{1}{2}(T + T^{T}) = M$ and $M_{ij} = \tau_{i \to j} + \tau_{i \to j}$.
- The skew-symmetric part $\frac{1}{2}(T T^{T}) = \frac{1}{2}(me^{T} em^{T})$, thus

$$m_i - m_j = 2(\tau_{i \rightarrow j} - \tau_{j \rightarrow i}).$$

The number m_i is the RW centrality of $i \in V$.

- J. D. Noh, H. Rieger. Random walks on complex networks. Phys. Rev. Lett. 92 (2004), 118701.

Ergodicity coefficients

Let $S = \{x \ge 0, e^{T}x = 1\}$ be the set of probability *n*-vectors.

Let $\|\cdot\|_p$ be a vector norm in \mathbb{R}^n . For any column stochastic matrix P the number

$$\tau_p(P) = \sup_{x,y \in \mathcal{S}} \frac{\|P(x-y)\|_p}{\|x-y\|_p}$$

is an ergodicity coefficient. A notable case:

The Dobrushin coefficient

$$\tau_1(P) = \sup_{x,y \in S} \frac{\|P(x-y)\|_1}{\|x-y\|_1} = \sup_{e^{\mathrm{T}}v=0} \frac{\|Pv\|_1}{\|v\|_1}.$$

Ergodicity coefficients

Let $S = \{x \ge 0, e^{T}x = 1\}$ be the set of probability *n*-vectors.

Let $\|\cdot\|_p$ be a vector norm in \mathbb{R}^n . For any column stochastic matrix P the number

$$\tau_p(P) = \sup_{x,y\in\mathcal{S}} \frac{\|P(x-y)\|_p}{\|x-y\|_p}$$

is an ergodicity coefficient. A notable case:

The Dobrushin coefficient

$$\tau_1(P) = \sup_{x,y \in S} \frac{\|P(x-y)\|_1}{\|x-y\|_1} = \sup_{e^T v = 0} \frac{\|Pv\|_1}{\|v\|_1}.$$

Explicit formula: If P is stochastic then

$$au_1(P) = rac{1}{2} \max_{j,k} \sum_{i=1}^n |P_{ij} - P_{ik}|.$$

Let P, P' be column stochastic matrices.

- $0 \le \tau_1(P) \le 1$. Moreover, $\tau_1(P) = 0$ if and only if rank(P) = 1.
- $|\tau_1(P) \tau_1(P')| \le ||P P'||_1.$
- $\tau_1(\alpha P + (1 \alpha)P') \le \alpha \tau_1(P) + (1 \alpha)\tau_1(P').$
- $\tau_1(PP') \le \tau_1(P)\tau_1(P').$

Let P, P' be column stochastic matrices.

- $0 \le \tau_1(P) \le 1$. Moreover, $\tau_1(P) = 0$ if and only if $\operatorname{rank}(P) = 1$.
- $|\tau_1(P) \tau_1(P')| \le ||P P'||_1.$
- $\tau_1(\alpha P + (1 \alpha)P') \le \alpha \tau_1(P) + (1 \alpha)\tau_1(P').$
- $\tau_1(PP') \le \tau_1(P)\tau_1(P').$

Theorem

Let P be a stochastic matrix. If $\tau_1(P) < 1$ then the Markov chain associated to P is ergodic:

The stochastic solution of x = Px is unique and

$$||x_k - x||_1 \le \tau_1(P)^k ||x_0 - x||_1.$$

Let P, P' be column stochastic matrices.

- $0 \le \tau_1(P) \le 1$. Moreover, $\tau_1(P) = 0$ if and only if rank(P) = 1.
- $|\tau_1(P) \tau_1(P')| \le ||P P'||_1.$
- $\tau_1(\alpha P + (1 \alpha)P') \le \alpha \tau_1(P) + (1 \alpha)\tau_1(P').$
- $\tau_1(PP') \le \tau_1(P)\tau_1(P').$

For the Google matrix ${\it G}= \alpha {\it P} + (1-\alpha) {\it ve^{\scriptscriptstyle T}}$ we have

$$\tau_1(G) = \tau_1(\alpha P + (1 - \alpha)ve^{\mathsf{T}})$$

$$\leq \alpha \tau_1(P) + (1 - \alpha)\tau_1(ve^{\mathsf{T}}) \leq \alpha.$$

Hence, for the Brin-Page navigation model we have ergodicity and

$$||x(k) - \pi||_1 \le \alpha^k ||x(0) - \pi||_1.$$

Let P, P' be column stochastic matrices.

- $0 \le \tau_1(P) \le 1$. Moreover, $\tau_1(P) = 0$ if and only if rank(P) = 1.
- $|\tau_1(P) \tau_1(P')| \le ||P P'||_1.$
- $\tau_1(\alpha P + (1 \alpha)P') \le \alpha \tau_1(P) + (1 \alpha)\tau_1(P').$
- $\tau_1(PP') \le \tau_1(P)\tau_1(P').$

Theorem

Let P, P' be irreducible, stochastic matrices. If Px = x and P'x' = x' (stationary prob. vectors) then

$$||x - x'||_1 \le \frac{||P - P'||_1}{1 - \tau_1(P)}.$$