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Introduction

Random walk on a graph G = (V, E):

e Start from a node i € V
(possibly chosen with some probability) W

o Pick one of the outgoing edges /_—)@)

e move to the destination of the edge o

o Repeat.

Applications

Random walks are widely used in network science to
e model user navigation and epidemic spreading
e quantify node centrality and accessibility

o reveal network communities and core-periphery structures.




Introduction

Random walk on a graph G = (V, E):

o Start from a node j € V e

(possibly chosen with some probability) W

o Pick one of the outgoing edges /_—@

e move to the destination of the edge o
o Repeat.

From here onward G = (V, E) denotes a directed graph without sink nodes:
d?’t >0 for i e V.

Questions
o Where is the walker after k steps?
e Long-term behavior? Depends on the initial node?

e How many timesteps to go from i/ to j7




Notations

o Xj: position of the walker at time k =0,1,2... (random variable)
o x(k): probability vector, x(k); = P(Xyx = i)

e P: column stochastic matrix, Pjj = P(Xit1 = i| Xk =)
(independently of k)

A random walk is a sequence of probability vectors {x(k)} such that x(k+
1) = Px(k) where the transition matrix P is column stochastic.

x(k) = P¥x(0).

In fact, (PX); = P(Xerk = i|Xe = J).



Notations

o Xj: position of the walker at time k =0,1,2... (random variable)
o x(k): probability vector, x(k); = P(Xyx = i)
e P: column stochastic matrix, Pjj = P(Xit1 = i| Xk =)

(independently of k)

Let A be the adjacency of a possibly weighted digraph,
Ajj = weight of (i,j) € E if present, Aj = 0 else.
Then the transition matrix of the associated RW is
Aji
e Aie

If the graph is not weighted then the random walk is uniform.

P; =



Ergodicity

A probability vector 7 is stationary for P if Pm = 7. At least one is
definitely there.

The random walk is ergodic if there is only one stationary probability
vector m and for all initial probability vectors xp the random walk
converges to 7:

lim x(k) = .
k— o0
Equivalently,
lim P* = 7e”.
k— o0
Lemma

A random walk is ergodic iff P is aperiodic and p(P) is simple. Moreover,
if P is irreducible then 7 > 0.

Proof: From P-F theory.



Ergodicity

A probability vector 7 is stationary for P if Pm = 7. At least one is
definitely there.

The random walk is ergodic if there is only one stationary probability
vector m and for all initial probability vectors xp the random walk
converges to 7:

lim x(k) = .
k— o0
Equivalently,
lim Pk = re”.
k— o0
Theorem

Let G’ be the subgraph of G made by all globally reachable nodes. The
random walk on G is ergodic iff G’ is not empty and aperiodic. Moreover,
if G is strongly connected then 7 > 0.

Proof: See Enrico’s second lecture.



PageRank

Let P be the stochastic matrix describing the RW on a graph G,
let v > 0 be a fixed probability vector, and « € (0, 1).

The matrix G = aP + (1 — a)ve” is the Google matrix of the graph G.

The Brin-Page navigation model

At each time step, the walker
o with probability o performs a step according to the RW rule;

e with probability 1 — & jumps to a node j chosen with probability v;.

The matrix G is positive and stochastic ~» The RW associated with G is
ergodic, the stationary vector 7 is positive, and

T

Gr=m
{e o ~ (I —aP)mr = (1—a)v.



Hitting times and return times

Problem
What is the average number of timesteps for the walker to go from node

s to node t?

Hitting time of t starting from s: 75, = E(k| Xk = t, Xo = s).
If s =t then 75_,; = 0, otherwise

Tost = Pes - 1+ Zi;ét Pis(Ti—Hr + 1)
=1+ 27:1 PisTi—>t-

Hitting time matrix

The hitting time matrix T = (7;_,j) solves the equation
(I = P")T = ee™ — Diag(71,...,7s)

where 7; = E(k > 0|Xx = i, Xo = i) is the return time of node /.




Hitting times and return times

Let P be irreducible, 7 = (m1,...,7,)" > 0 be the stationary probability
vector,

Pr =, e'm=1.
From (I — P")T = ee™ — Diag(m, ..., 7,) we obtain
0=7"(l — PT)T = n"(ee™ — Diag(m,...,7s))
= e" — 7' Diag(m,...,Tn)-
Kac’s lemma

For an irreducible RW with stationary prob. vector ™ > 0,

T — 1/7T,'.

Thus Diag(71,. .., 7,) = Diag(my,...,m) L.



Hitting times and return times

Let P be irreducible, 7 = (m1,...,7,)" > 0 be the stationary probability
vector,

Pr =, e'm=1.

From (I — P")T = ee™ — Diag(m, ..., 7,) we obtain

(I = P")Tm = (ee™ — Diag(71,...,7,))w

= e — Diag(my,...,m,) tn = 0.
But then T € Ker(/ — P™) = (e).
Random target lemma

n
(T?T),' = Z?TJ'T,'_U' = K,
j=1

where k > 0 is the Kemeny's constant.




A special case

Let G be irreducible and undirected, A= AT.

Then P = ADiag(d)~! and 7 = d/(e"d) where d = Ae is the degree
vector.
Define M = (A/(e*d) — Diag(r) — 77%)~! and m = diag(M).
Note that M = M™.
Then T =M —em".

o The symmetric part (T + T7) = M and My = 7i,j + Tj;.

o The skew-symmetric part 3(T — T") = 1(me™ — em™), thus

mi — mj = 2Tisj — Tji)-

The number m; is the RW centrality of / € V.

@ J. D. Noh, H. Rieger. Random walks on complex networks.
Phys. Rev. Lett. 92 (2004), 118701.



Ergodicity coefficients

Let S = {x > 0,e"x = 1} be the set of probability n-vectors.

Let || - ||, be a vector norm in R”. For any column stochastic matrix P

P(x —
Tp(P) = sup H (X y)HP
xyes X =yllp

the number

is an ergodicity coefficient. A notable case:

The Dobrushin coefficient

P(x — P
Py wp PO 1P
x,y€S ||X - .y”l eTv=0 |IV||1




Ergodicity coefficients

Let S = {x > 0,e"x = 1} be the set of probability n-vectors.

Let || - ||, be a vector norm in R”. For any column stochastic matrix P

P(x —
Tp(P) = sup H (X y)HP
xyes X =yllp

the number

is an ergodicity coefficient. A notable case:

The Dobrushin coefficient

P(x — P
(P = sup LPC= 1P
X,y€S ||X - .)/”1 eTv=0 |IV||1

Explicit formula: If P is stochastic then

1 n
T (P) = > "J.‘«';‘(XZ|PU — Pil-
=1



Ergodicity coefficients - properties

Let P, P’ be column stochastic matrices.
e 0 < 71(P) < 1. Moreover, 71(P) = 0 if and only if rank(P) = 1.
o [1(P)—7n(P)| <[P =P
o mi(aP + (1 —a)P) < an(P)+ (1 — a)r(P').
o 71(PP") < (P)mi(P).
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Ergodicity coefficients - properties

Let P, P’ be column stochastic matrices.

e 0 < 71(P) < 1. Moreover, 71(P) = 0 if and only if rank(P) = 1.

o |1(P)—n(P)| <[P —P|1.
o 7i(aP+(1—a)P) <ar(P)+(1—a)r(P).
o 11(PP") < 1 (P)ri(P').

Theorem

Let P be a stochastic matrix. If 71(P) < 1 then the Markov chain
associated to P is ergodic:

The stochastic solution of x = Px is unique and

Ixc = x|l1 < 71(P)*||x0 — x]J1-
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Ergodicity coefficients - properties

Let P, P’ be column stochastic matrices.

e 0 <7(P) <1. Moreover, 71(P) = 0 if and only if rank(P) = 1.
e [1(P) = (P <[P =Pl
o 7i(aP+(1—a)P) <ar(P)+(1—a)r(P).
o 11(PP") < 1 (P)ri(P').
For the Google matrix G = aP + (1 — a)ve™ we have
71(G) = 11 (aP + (1 — a)ve™)
<ar(P)+ (1 —a)r(ve") < a.

Hence, for the Brin-Page navigation model we have ergodicity and

Ix(k) = 7l < a¥[|x(0) — .
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Ergodicity coefficients - properties

Let P, P’ be column stochastic matrices.

e 0 <7(P) <1. Moreover, 71(P) = 0 if and only if rank(P) = 1.
o [n(P) —n(P)| <[P = P

o n(aP +(1-a)P) <an(P)+ (1 - a)n(P).

o 1i(PP") < i (P)m(P').

Theorem

Let P, P’ be irreducible, stochastic matrices. If Px = x and P'x’ = x’
(stationary prob. vectors) then

1P =Pl

/
— < .
Ix = x'||1 < 1—n(P)
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