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Introduction

Random walk on a graph G = (V ,E ):

• Start from a node i ∈ V

(possibly chosen with some probability)

• Pick one of the outgoing edges

• move to the destination of the edge

• Repeat.
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Applications

Random walks are widely used in network science to

• model user navigation and epidemic spreading

• quantify node centrality and accessibility

• reveal network communities and core-periphery structures.
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Introduction

Random walk on a graph G = (V ,E ):

• Start from a node i ∈ V

(possibly chosen with some probability)

• Pick one of the outgoing edges

• move to the destination of the edge

• Repeat.
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?From here onward G = (V ,E ) denotes a directed graph without sink nodes:

dout
i > 0 for i ∈ V .

Questions

• Where is the walker after k steps?

• Long-term behavior? Depends on the initial node?

• How many timesteps to go from i to j?
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Notations

• Xk : position of the walker at time k = 0, 1, 2 . . . (random variable)

• x(k): probability vector, x(k)i = P(Xk = i)

• P: column stochastic matrix, Pij = P(Xk+1 = i |Xk = j)

(independently of k)

A random walk is a sequence of probability vectors {x(k)} such that x(k +

1) = Px(k) where the transition matrix P is column stochastic.

x(k) = Pkx(0).

In fact, (Pk)ij = P(X`+k = i |X` = j).
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Notations

• Xk : position of the walker at time k = 0, 1, 2 . . . (random variable)

• x(k): probability vector, x(k)i = P(Xk = i)

• P: column stochastic matrix, Pij = P(Xk+1 = i |Xk = j)

(independently of k)

Let A be the adjacency of a possibly weighted digraph,

Aij = weight of (i , j) ∈ E if present, Aij = 0 else.

Then the transition matrix of the associated RW is

Pij =
Aji∑n
`=1 Aj`

.

If the graph is not weighted then the random walk is uniform.
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Ergodicity

A probability vector π is stationary for P if Pπ = π. At least one is

definitely there.

The random walk is ergodic if there is only one stationary probability

vector π and for all initial probability vectors x0 the random walk

converges to π:

lim
k→∞

x(k) = π.

Equivalently,

lim
k→∞

Pk = πeT.

Lemma

A random walk is ergodic iff P is aperiodic and ρ(P) is simple. Moreover,

if P is irreducible then π > 0.

Proof: From P-F theory.
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Ergodicity

A probability vector π is stationary for P if Pπ = π. At least one is

definitely there.

The random walk is ergodic if there is only one stationary probability

vector π and for all initial probability vectors x0 the random walk

converges to π:

lim
k→∞

x(k) = π.

Equivalently,

lim
k→∞

Pk = πeT.

Theorem

Let G′ be the subgraph of G made by all globally reachable nodes. The

random walk on G is ergodic iff G′ is not empty and aperiodic. Moreover,

if G is strongly connected then π > 0.

Proof: See Enrico’s second lecture.
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PageRank

Let P be the stochastic matrix describing the RW on a graph G,

let v > 0 be a fixed probability vector, and α ∈ (0, 1).

The matrix G = αP + (1− α)veT is the Google matrix of the graph G.

The Brin-Page navigation model

At each time step, the walker

• with probability α performs a step according to the RW rule;

• with probability 1− α jumps to a node j chosen with probability vj .

The matrix G is positive and stochastic  The RW associated with G is

ergodic, the stationary vector π is positive, and{
Gπ = π

eTπ = 1
 (I − αP)π = (1− α)v .
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Hitting times and return times

Problem

What is the average number of timesteps for the walker to go from node

s to node t?

Hitting time of t starting from s: τs→t = E(k |Xk = t,X0 = s).

If s = t then τs→t = 0, otherwise

τs→t = Pts · 1 +
∑

i 6=t Pis(τi→t + 1)

= 1 +
∑n

i=1 Pisτi→t .
s

t

i

Pts

11

Pis
44

τi→t

��

Hitting time matrix

The hitting time matrix T = (τi→j) solves the equation

(I − PT)T = eeT −Diag(τ1, . . . , τn)

where τi = E(k > 0|Xk = i ,X0 = i) is the return time of node i .
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Hitting times and return times

Let P be irreducible, π = (π1, . . . , πn)T > 0 be the stationary probability

vector,

Pπ = π, eTπ = 1.

From (I − PT)T = eeT −Diag(τ1, . . . , τn) we obtain

0 = πT(I − PT)T = πT(eeT −Diag(τ1, . . . , τn))

= eT − πTDiag(τ1, . . . , τn).

Kac’s lemma

For an irreducible RW with stationary prob. vector π > 0,

τi = 1/πi .

Thus Diag(τ1, . . . , τn) = Diag(π1, . . . , πn)−1.
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Hitting times and return times

Let P be irreducible, π = (π1, . . . , πn)T > 0 be the stationary probability

vector,

Pπ = π, eTπ = 1.

From (I − PT)T = eeT −Diag(τ1, . . . , τn) we obtain

(I − PT)Tπ = (eeT −Diag(τ1, . . . , τn))π

= e −Diag(π1, . . . , πn)−1π = 0.

But then Tπ ∈ Ker(I − PT) = 〈e〉.

Random target lemma

(Tπ)i =
n∑

j=1

πjτi→j = κ,

where κ > 0 is the Kemeny’s constant.
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A special case

Let G be irreducible and undirected, A = AT .

Then P = ADiag(d)−1 and π = d/(eTd) where d = Ae is the degree

vector.

Define M = (A/(eTd)−Diag(π)− ππT)−1 and m = diag(M).

Note that M = MT.

Then T = M − emT.

• The symmetric part 1
2 (T + TT) = M and Mij = τi→j + τj→i .

• The skew-symmetric part 1
2 (T − TT) = 1

2 (meT − emT), thus

mi −mj = 2(τi→j − τj→i ).

The number mi is the RW centrality of i ∈ V .

J. D. Noh, H. Rieger. Random walks on complex networks.

Phys. Rev. Lett. 92 (2004), 118701.
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Ergodicity coefficients

Let S = {x ≥ 0, eTx = 1} be the set of probability n-vectors.

Let ‖ · ‖p be a vector norm in Rn. For any column stochastic matrix P

the number

τp(P) = sup
x,y∈S

‖P(x − y)‖p
‖x − y‖p

is an ergodicity coefficient. A notable case:

The Dobrushin coefficient

τ1(P) = sup
x,y∈S

‖P(x − y)‖1
‖x − y‖1

= sup
eTv=0

‖Pv‖1
‖v‖1

.
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Ergodicity coefficients

Let S = {x ≥ 0, eTx = 1} be the set of probability n-vectors.

Let ‖ · ‖p be a vector norm in Rn. For any column stochastic matrix P

the number

τp(P) = sup
x,y∈S

‖P(x − y)‖p
‖x − y‖p

is an ergodicity coefficient. A notable case:

The Dobrushin coefficient

τ1(P) = sup
x,y∈S

‖P(x − y)‖1
‖x − y‖1

= sup
eTv=0

‖Pv‖1
‖v‖1

.

Explicit formula: If P is stochastic then

τ1(P) =
1

2
max
j,k

n∑
i=1

|Pij − Pik |.
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Ergodicity coefficients - properties

Let P,P ′ be column stochastic matrices.

• 0 ≤ τ1(P) ≤ 1. Moreover, τ1(P) = 0 if and only if rank(P) = 1.

• |τ1(P)− τ1(P ′)| ≤ ‖P − P ′‖1.

• τ1(αP + (1− α)P ′) ≤ ατ1(P) + (1− α)τ1(P ′).

• τ1(PP ′) ≤ τ1(P)τ1(P ′).
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Ergodicity coefficients - properties

Let P,P ′ be column stochastic matrices.

• 0 ≤ τ1(P) ≤ 1. Moreover, τ1(P) = 0 if and only if rank(P) = 1.

• |τ1(P)− τ1(P ′)| ≤ ‖P − P ′‖1.

• τ1(αP + (1− α)P ′) ≤ ατ1(P) + (1− α)τ1(P ′).

• τ1(PP ′) ≤ τ1(P)τ1(P ′).

Theorem

Let P be a stochastic matrix. If τ1(P) < 1 then the Markov chain

associated to P is ergodic:

The stochastic solution of x = Px is unique and

‖xk − x‖1 ≤ τ1(P)k‖x0 − x‖1.
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Ergodicity coefficients - properties

Let P,P ′ be column stochastic matrices.

• 0 ≤ τ1(P) ≤ 1. Moreover, τ1(P) = 0 if and only if rank(P) = 1.

• |τ1(P)− τ1(P ′)| ≤ ‖P − P ′‖1.

• τ1(αP + (1− α)P ′) ≤ ατ1(P) + (1− α)τ1(P ′).

• τ1(PP ′) ≤ τ1(P)τ1(P ′).

For the Google matrix G = αP + (1− α)veT we have

τ1(G ) = τ1(αP + (1− α)veT)

≤ ατ1(P) + (1− α)τ1(veT) ≤ α.

Hence, for the Brin-Page navigation model we have ergodicity and

‖x(k)− π‖1 ≤ αk‖x(0)− π‖1.
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Ergodicity coefficients - properties

Let P,P ′ be column stochastic matrices.

• 0 ≤ τ1(P) ≤ 1. Moreover, τ1(P) = 0 if and only if rank(P) = 1.

• |τ1(P)− τ1(P ′)| ≤ ‖P − P ′‖1.

• τ1(αP + (1− α)P ′) ≤ ατ1(P) + (1− α)τ1(P ′).

• τ1(PP ′) ≤ τ1(P)τ1(P ′).

Theorem

Let P,P ′ be irreducible, stochastic matrices. If Px = x and P ′x ′ = x ′

(stationary prob. vectors) then

‖x − x ′‖1 ≤
‖P − P ′‖1
1− τ1(P)

.
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